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Using the computer system PASS (prediction of activity spectra for substances), which predicts
simultaneously several hundreds of biological activities, a training set for discriminating
between drugs and nondrugs is created. For the training set, two subsets of databases of drugs
and nondrugs (a subset of the World Drug Index, WDI, vs the Available Chemicals Directory,
ACD) are used. The high value of prediction accuracy shows that the chemical descriptors and
algorithms used in PASS provide highly robust structure-activity relationships and reliable
predictions. Compared to other methods applied in this field, the direct benchmark undertaken
with this paper showed that the results obtained with PASS are in good accordance with these
approaches. In addition, it has been shown that the more specific drug information used in the
training set of PASS, the more specific discrimination between drug and nondrug can be
obtained.

Introduction

In the past decade the drug discovery process has
changed dramatically. The challenge to identify novel
leads has driven the need for automated systems that
can rapidly perform selection of compounds at the
beginning of the drug discovery process, namely in the
analysis and the extension of the high throughput
screening (HTS) pool. The number of discovered hits
depends on the cutoff level, e.g., 10 mM. First of all,
the activity needs have to be confirmed and then
followed by selectivity and functional assays.

An important task is the rejection of false hits and
focus on the promising molecules. The lead molecule
plays the pivotal role for the initiation of a lead
optimization project. A promising lead compound with
a desired pharmacological activity may have undesir-
able side effects, characteristics that limit its bioavail-
ability, or structural features which adversely influence
its metabolism and excretion from the body.

Therefore biological activity has to be balanced with
“drug-like” properties, and the closer we get to a
candidate compound, the more important drug-likeness
becomes. Despite the many attempts1-11 to classify
compounds into the “drug” and “nondrug” categories,
there is no unambiguous definition for drug and non-
drug. Especially, it may vary depending the indications
or diseases considered.12 Reagent databases such as
ACD,13 as an example, is often used as a model database
for nondrug compounds, while CMC,14 WDI,15 and
MDDR16 could be seen as databases for drugs. Certainly,
if one could consider the fate of some compounds in the

ACD database they may become drugs in the future,
whereas a few compounds from MDDR and WDI will
never be seen as drugs.

Because of the lack of discrimination among struc-
tural features for drug and nondrug compounds, differ-
ent approaches have to be applied to compensate. As
concluded by Walters et al.,17 “future work is likely to
include additional approaches and more robust attempts
at validation of these methods.”

The PASS program,18-22 which is based on a regres-
sion approach applied to noncongeneric chemical series,
provides highly robust predictions for more than 500
biological activities. Since PASS is trained to recognize
drugs with activities on various targets, the approach
may have potential use to discriminate drugs from
nondrugs. The purpose of this work is to evaluate the
ability of the PASS approach in discriminating between
drug-like compounds and nondrugs.

Materials and Methods
PASS Approach. The computer system PASS (prediction

of activity spectra for substances)18-21 predicts several hun-
dreds of biological activities (pharmacological main and side
effects, mechanisms of action, mutagenicity, carcinogenicity,
teratogenicity, and embryotoxicity).

Biological activity results from the interaction of chemical
compounds with biological entities. In clinical studies, the
biological entity is the whole human organism. In preclinical
testing they are the experimental animal (in vivo) and/or the
experimental model (in vitro). Biological activity depends on
peculiarities of compound (structure and physicochemical
properties), biological entity (species, gender, age, etc.), and
mode of treatment (dose, route of administration, etc.).

The majority of biologically active compounds reveal often
a wide spectrum of different effects. Some of them are useful
in treatment of definite diseases; others cause various side and
toxic effects. The whole complex of activities caused by the
compound in biological entities is called the “biological activity
spectrum of the substance”.

The biological activity spectrum of a compound presents all
its activities despite the difference in essential conditions of
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their experimental determination. If the difference in species,
gender, age, dose, route, etc., is neglected, the biological
activity can be identified only qualitatively. Thus, “the biologi-
cal activity spectrum” is defined as the “intrinsic” property of
a compound depending only on its structure and physicochem-
ical characteristics.

The prediction of this spectrum by PASS is based on SAR
analysis of a training set containing more than 30 000
compounds which reveal more than 500 kinds of biological
activities. Therefore, PASS once trained is able to predict for
a test compound all likely biological activities, which are
included in the training set.

It was shown that the mean accuracy of prediction with
PASS is about 86% in leave-one-out cross-validation.21 PASS
prediction accuracy exceeds more than three times the expert’s
guess-work for an independent set of 33 different compounds
studied as pharmacological agents, which are not included in
the PASS training set.22 Recently PASS was tested in a blind
mode by nine scientists from eight countries on the hetero-
geneous set of 118 compounds having 138 activities, and the
mean accuracy of prediction was shown to be 82.6%.23 The
PASS prediction is relatively successful even in the case of
rather new compounds which have nontraditional structures
and/or belong to new chemical classes. Like any other ligand-
based design approach, PASS cannot predict the affinity for
new targets, but even in that case PASS points to possible side
effects which may also prevent the application of a drug
candidate.

Besides this SAR-base available in PASS, it is also possible
to create other SAR-bases or to enlarge it.

Activities Description. In this work, the investigated
activity is “drug”, so the compounds from WDI and the Cipsline
DB were described as drugs and the compounds from the other
sets were described as nondrugs.

Chemical Structure Description. We described in detail
the substructure descriptors called “multilevel neighborhoods
of atoms” (MNA) in a paper published recently.24 MNA
descriptors of a molecule are based on the 2D representation
of its structure. According to the valences and partial charges
of the atoms, hydrogens are included, whereas bond types are
not explicitly specified. An MNA descriptors set is subdivided
on levels and generated recursively. A zero-level MNA descrip-
tor describes the atom itself. Any next level MNA descriptor
is the substructure notation A(D1D2...), where A is the atom
A descriptor, and Di is the previous level MNA descriptor of
ith neighbor atom for atom A. For example, for carbon(3) in
Figure 1, the MNA descriptors are as follows: first, “C”; second,
“C(CCCC)”; third, “C(C(HHHC)C(HHHC)C(HHCN)C(HH-
CO))”.

Different stereoisomers of a molecule have identical MNA
descriptors and are considered as equivalent molecules in
PASS. The use of MNA descriptors in PASS for prediction is
described in the Appendix. In the present version of PASS,
up to second level MNA descriptors are used.

Databases Used for the Training and Evaluation of
PASS. To compare the PASS ability in discriminating drug-
like compounds and nondrugs with the recently published
results of Sadowski and Kubinyi,3 we used the same subsets
of WDI and ACD compounds for the training of PASS. These
subsets include 5000 compounds from WDI (“drugs”) and 5000
compounds from ACD (“nondrugs”). This data set was also
used by Ajay et al.2

To evaluate the method we prepared several test sets. As a
sample of drug compounds we extracted two data sets from
the Cipsline database,25 which is a subset of MDDR.16 The first
subset includes all launched, registered, and investigated
compounds (LRID). At the second stage, in order to focus on
real drug compounds, we extracted the subset of Cipsline with
just launched and registered compounds (LRD). If the PASS

approach could provide a reasonable discrimination between
drugs/nondrugs, the expected results should be better for the
second subset.

As an example for a nondrug data set, we prepared 9737
compounds (ND) from a supplier database of approximately
57 000 commercially available compounds. A compound was
identified as nondrug by the analysis of 60 different functional
groups/fragments. Most of them are reactive groups, which are
unfavorable for drugs. Some examples of such groups are
shown in Table 1.

In addition, all compounds with a molecular weight less
than 150 Da were classified as nondrugs.

As an independent evaluation set of drugs (TOP-100), we
use a list of top-100 prescription pharmaceuticals26 (Table 2).
Twelve of these entries are biopolymers and were not included
in the evaluation (Table 3).

Computation Time. The calculation time on a PC (Pen-
tium 2; 300 MHz; 128 Mb RAM) for the prediction of one
compound is 4 ms, which demonstrates the ability of PASS to
handle huge data sets, as they are used, for example, in the
analysis of virtual libraries or supplier databases.

Results and Discussion

Training of PASS. The results of a leave-one-out
cross-validation (LOO), which characterizes the quality
of obtained structure-property relationships, are shown
in Table 4, no. 1. The quality of the prediction is
described by the percentage of false classification.
During model building (including LOO cross-validation),
the quality is expressed as the mean error of prediction
(MEP). The mean accuracy for prediction in the LOO
cross-validation is about 80%, which is slightly less than
in the current version of PASS applied for the prediction
of the biological activity spectra, but which is still
satisfactory to discriminate between drugs and non-
drugs. Such accuracy of prediction is comparable to the
results obtained by Sadowsky and Kubinyi.3

Figure 1.

Table 1. Functional Groups Describing Nondrug Compoundsa

aldehyde isothiourea
R halogenated ketone (>2)
R-â unsat. (>2) nitro (>2)
amide (>2) oxime
aryl-Br PdS bond
aryl-Cl (>3) arom. hydroxy (>2)
aryl-F (>3) phosphine
aryl-I phosphoric acid ester
azide phosphorus (>1)
azo compds prim. alcohol (>2)
benzylhalogenide prim. amine (>1)
boron prim. arom. amine (>1)
carbamate (>3) sec. alcohol (>2)
carbamoyl chloride sec. amine (>2)
carbonate sec. aromatic amine (>2)
carbox. acid ester (>2) silicon
carbox. acid anhydride S-N bond
carbox. acid hal. sulfone (>1)
carbox. acid (>2) sulfonic acid ester (>1)
crown ether sulfonic acid (>1)
diazonium salt sulfonamide (>2)
disulfide sulfonylhalogenide
dithio acid ester sulfur (>3)
dithio carbamate sulfuric acid ester
double bond (>1) tert. aliphat. amines (>2)
enolate (>1) tert. arom. amines (>2)
epoxide thioester (>1)
hydrazine (>1) thioureas (>1)
imines (>1) 1,1,1-trichloroethyl-2,2-diamino
iso(thio)cyanante trifluoromethyl (>2)
a Minimum frequency of a certain functional group is indicated

in parentheses; in all other cases it is 1. Compounds with MW <
150 were also classified as nondrugs.
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Evaluation of PASS vs “Drugs”. Formally the first
test set (LRID) includes 7468 presumed drug com-
pounds. Their structures were checked for being present
in the training set yielding 632 compounds. These
compounds were eliminated from the test set, as were
688 compounds which had no connection table fields or
had errors in structural formulas (invalid compounds).
After filtering, the final test set contained 6148 com-

pounds. A total of 4514 (73.4%) compounds were pre-
dicted as drugs and 1634 (26.6%) compounds as non-
drugs (Table 4; no. 2).

There exists no independent criteria to be sure that
some compounds predicted as nondrug will not become
drugs in the future; therefore we eliminated all the
investigated compounds from the LRID set. The re-
maining 1184 compounds were launched and registered

Table 2. Evaluation Set Based on the List of Top-100 Drugs

WDI/ACD LR/ND WDI/ACD LR/ND

drug indication drug nondrug drug nondrug drug indication drug nondrug drug nondrug

Accupril hypertension 0.427a 0.802 Parlodel parkinsonism 0.937 0.916
Adalat hypertension/

angina
0.335 0.246 Pepcid antiulcer 0.204 0.154

Amoxil antiinfective 0.723 0.902 Premarin oestrogen
replacement

0.580 0.163

Ativan antianxiety 0.310 0.319 Prepulsid/
Propulsid

nocturnal
heartburn

0.325 0.457

Augmentin antiinfective 0.723 0.902 Prinivil hypertension 0.516 0.833
Axid antiulcer 0.287 0.469 Procardia hypertension/

angina
0.335 0.246

Becotide/
Beclovent

asthma 0.835 0.938 Proscar benign
prostatic
hypertrophy

0.615 0.613

Buspar antianxiety 0.265 0.431 Proventil asthma 0.691 0.567
Calan hypertension/

angina
0.448 0.859 Provera hormone

therapy/
contraceptive

0.677 0.857

Capoten hypertension 0.565 0.712 Prozac antidepressant 0.245 0.335
Cardizem hypertension/

angina
0.43 0.506 Relifex/

Relafen
arthritis 0.308 0.131

Cardura hypertension/
BPH

0.443 0.538 Renitec/
Vasotec

hypertension 0.512 0.825

Ceclor antiinfective 0.622 0.820 Retrovir AIDS 0.524 0.182
Ciproxin antiinfective 0.622 0.846 Risperdal antipsychotic 0.300 0.207
Claforan antiinfective 0.580 0.968 Roaccutane

Accutane
acne 0.832 0.731

Claritin allergy 0.238 0.643 Rocephin antiinfective 0.303 0.919
Dalacin/

Cleocin
antiinfective 0.654 0.293 Sandimmun/

Sandimmune
immuno-

suppressive
0.944 0.821

Depakote epilepsy 0.405 0.551 Seldane allergy 0.532 0.735
Diflucan antifungal 0.215 0.120 Serevent asthma 0.662 0.530
Diprivan anasthesia

inducer
0.436 0.115 Seroxat/

Paxil
antidepressant 0.528 0.566

Dormicum/
Versed

anaesthesia
inducer

0.228 0.644 Sporanox fungal 0.208 0.787

Duricef antiinfective 0.694 0.894 Tagamet antiulcer 0.558 0.939
Estraderm oestrogen

replacement
0.686 0.655 Taxol anticancer 0.806 0.907

Eulexin anticancer 0.749 0.347 Tegretol epilepsy 0.258 0.605
Feldene arthritis 0.224 0.607 Tenormin hypertension 0.535 0.583
Fortum/

Fortaz
antiinfective 0.554 0.981 Timoptic glaucoma 0.365 0.516

Hytrin hypertension/
BPH

0.431 0.646 Toradol analgesic 0.475 0.759

Imigran/
Imitrex

migraine 0.252 0.720 Transderm-
Nitro

angina 0.967 0.791

Intal asthma 0.529 0.548 Trental haemorheologic 0.367 0.289
Istin/

Norvasc
hypertension/

angina
0.276 0.426 Unasyn antiinfective 0.668 0.976

Klacid/
Klaricid/
Biaxin

antiinfective 0.994 0.994 Vancenase/
Vanceril

asthma/
antiallergy

0.776 0.922

Klonopin epilepsy 0.323 0.186 Vancocin antiinfective 0.863 0.807
Lamisil antifungal 0.477 0.239 Ventolin asthma 0.691 0.567
Lasix diuretic 0.369 0.362 Voltaren arthritis 0.382 0.102
Leponex/

Clozaril
antipsychotic 0.251 0.377 Xanax/

Alprazolam
antianxiety 0.207 0.651

Lipostat/
Pravachol

cholesterol
reducer

0.916 0.956 Zantac antiulcer 0.239 0.619

Lodine arthritis 0.624 0.179 Zestril hypertension 0.516 0.833
Losec/

Prilosec
antiulcer 0.373 0.564 Zinnat/

Ceftin
antiinfective 0.493 0.840

Lotensin hypertension 0.452 0.626 Zithromax antiinfective 0.993 0.993
Lupron anticancer/

antiendometriosis
0.506 0.919 Zocor cholesterol

reducer
0.960 0.957

Lustral/
Zoloft

antidepressant 0.309 0.656 Zofran antiemetic 0.361 0.413

Mevacor cholesterol
reducer

0.979 0.982 Zoladex anticancer 0.393 0.837

Nizoral antifungal 0.414 0.573 Zovirax herpes 0.749 0.751
Nolvadex anticancer 0.572 0.400
Paraplatin anticancer 0.314 0.902

a Pa scores representing probability belong to this therapeutic class.
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compounds (LR) and represent real drugs. Their mo-
lecular structures were again checked for presence in
the training set (111 compounds), and 208 compounds
were removed as being invalid. A total of 864 structures
were calculated, and 678 (78.5%) compounds were
predicted as drugs and 186 (21.5%) as nondrugs (Table
4; no. 3). It is obvious that the fraction of compounds
classified as drugs is higher in comparison with the first
test set. This can be explained by a more objective
definition of drug and nondrug for the second test set,
which provides better recognition of real drugs from the
suggested drugs of WDI.

Evaluation of PASS vs “Nondrugs”. The third
evaluation set (ND) included 9737 compounds from
different sources carefully selected as nondrugs accord-
ing to the criteria discussed above. After the same
filtering procedure, 9484 compounds were left for pre-

diction. A total of 7950 compounds (83.8%) were pre-
dicted as nondrugs and 1534 (16.2%) compounds as
drugs (Table 4; no. 4). These results show that cleaning
of the test set gave a higher prediction accuracy.

Evaluation of PASS vs Drugs from the Top-100
List. As we suggested that most of drugs from this list
may be also included into the WDI set, all predictions
were carried out under exclusion of the equivalent
compounds from the training set. For 88 compounds
remaining from the list of top-100 prescription phar-
maceuticals, 77 compounds (87.5%) were predicted as
drugs and 11 (12.5%) were predicted as nondrugs (Table
4; no. 5).

Evaluation of PASS with the Cleaned Training
Set. It was interesting to see if the cleaning of the
training set could also increase the accuracy of the PASS

Figure 2. Distribution of predicted scores Pa for drugs (black) and nondrugs (white): a, WDI/ACD training set and LRID test
set (Table 4, no. 2); b, WDI/ACD training set and LR test set (Table 4, no. 3); c, WDI/ACD training set and ND test set (Table 4,
no. 4); d, WDI/ACD training set and TOP-100 test set (Table 4, no. 5); e, LR/ND training set and TOP-100 test set (Table 4, no.
11).

Table 3. Entries Excluded from Evaluation (Biologicals)

drug indication comment

Activase clot dissolver tissue plasminogen
activator

Clexane/Lovenox anticoagulant low MW heparin
Engerix-B immunostimulant hepatitis B vaccine
Epogen erythropoiesis glycoprotein
Eprex/Procit erythropoiesis glycoprotein
Genotropin growth hormone protein
Humatrope growth hormone
Humulin diabetes insulin
Intron_A biological response

modifier
low MW glycoprotein

Neupogen biological response
modifier

protein

Ortho-Novum oral contraceptive
Primaxin antiinfective

Table 4. Quality of Discriminating between Drugs and
Nondrugs by Different Methods

no. traing set/ref procedure test set

false
classification

(%)

1 WDI/ACD LOO c-va 20.1b

2 WDI/ACD LRID 26.6
3 WDI/ACD LR 21.5
4 WDI/ACD ND 16.2
5 WDI/ACD TOP-100 12.5
6 Sadowski and Kubinyi3 WDI 23.0
7 Sadowski and Kubinyi3 ACD 17.0
8 Ajay2 MDDR 20.0
9 Ajay2 CMC 10.0
10 LR/ND LOO c-va 10.1b

11 LR/ND TOP-100 4.5
a LOO c-v: leave-one-out cross-validation. b MEP: maximal

error of prediction in LOO cross validation.
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prediction. Therefore, we trained PASS with a new drug/
nondrug SAR-base represented by the test sets LR and
ND. The results of the LOO cross-validation are listed
in the Table 4; no. 10. It is obvious that the accuracy of
prediction is about 90%. That is significantly higher
than in the WDI/ACD training procedure used in the
first training set.

The results of prediction for the 88 compounds from
the list of top-100 prescription pharmaceuticals were
even better than in the LOO cross-validation. A total
of 84 compounds (95.5%) were predicted as drugs, while
only four compounds (4.5%) were predicted as nondrugs.

In Figure 2 the distributions of the numbers of drugs/
nondrugs predicted with different training and test sets
are presented versus the value of the PASS score Pa,
which represents the estimated probability of compound
belonging to the class of “drugs”. It is clear that the
discriminating ability of PASS is significantly higher
in case of the cleaned training set, as it was obviously
demonstrated for the test set of the top-100 prescription
drugs.

Conclusions

The discrimination between drug and nondrug is
facing three problems: (i) not well-defined databases,
(ii) choice of a method to discriminate, and (iii) the
selection of appropriate descriptors.

The widely used databases for the discrimination
between drugs and nondrugs are relatively noisy: some
compounds assigned as drugs are nondrugs in reality
and vice versa. Since this problem lies in the nature of
the complex term “drug-likeness”, there seems no simple
way to overcome the underlying problem.

Our experiments provide the evidence that informa-
tion-guided selection of the data sets gives higher
accuracy in discrimination between the classes of drug-
like compounds and nondrugs. The high value of predic-
tion accuracy shows that the chemical descriptors and
algorithms used in PASS provide highly robust struc-
ture-activity relationships and reliable predictions on
this basis. Compared to other methods applied in the
field, the direct benchmark undertaken with this paper
showed that the results obtained with PASS are in good
accordance with these approaches.

Since no specific adaption of the prediction scheme
implemented in the PASS program was required, the
advantage of the PASS approach lies in the fact that
only two annotated data pools for drug and nondrug
cases are necessary to allow a reliable prediction of
discrimination of given features. So the PASS methodol-
ogy opens the door to include more specific drug
information in order to get a more specific discrimina-
tion. This may also be extended to physical-chemical
properties as well as the interplay of those properties
with dedicated pharmacological properties.
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from WDI and ACD, which were used as an initial
training set for PASS in this work.

Appendix: Mathematical Method

Abbreviations:
n is the total amount of compounds in the training

set.

ni is the amount of compounds, containing descriptor
i.

nj is the amount of compounds, revealing activity j.
nij is the amount of compounds, containing descriptor

i and revealing activity j.
pj ) nj/n is the estimate of the a priori probability of

activity j.
pij ) nij/ni is the estimate of the conditional prob-

ability of the activity j for the descriptor i.
m is the number of descriptors for the compound

under prediction.
ri ) ni/(ni + 0.5/m) is the regulating factor.
Prj is the initial estimate of the probability of the

activity j for the compound under prediction.
LOO is leave-one-out procedure: for each com-

pound in the training set, the values n, ni, nj,
nij are changed for n - 1, ni - 1, and nj - 1, nij
- 1 when one is active, and the estimates Prj
are calculated.

Algorithm of prediction:
For the compound under prediction, the struc-

ture descriptors are generated.
For each activity, the following values are calculated:

uj ) ∑i arcsin{ri(2pij - 1)}
u0j ) ∑i arcsin{ri(2pj - 1)}
sj ) sin(uj/m)
s0j ) sin(u0j/m)
Prj ) (1 + (sj - s0j)/(1 - sjs0j))/2

Validation criterion:
For each compound in the training set, the LOO

estimates of Prj are calculated:
EFj(CP) is the estimate of the first kind of error

probability.
ESj(CP) is the estimate of the second kind of error

probability.
CP is the cutting point.

The first kind of error is fixed when the compound
under prediction actually is active but Prj < CP.

The second kind of error is fixed when the compound
under prediction is inactive and Prj > CP.

For each activity, the estimates of EFj(CP) and ESj-
(CP) are calculated.

The cutting points CPj* which gives equality:
EFj(CPj*) ) ESj(CPj*) are calculated.

The maximal error of prediction MEP is as follows:
MEPj ) EFj(CPj*) ) ESj(CPj*)

Results of prediction:
The probability to be active is Paj ) EFj(Prj).
The probability to be inactive is Pij ) ESj(Prj).
Pa (Pi) can be considered as the probability of the

first (second) kind of errors for the compound under
prediction or as the probability of the compound
belonging to classes of active (inactive) compounds,
respectively.
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